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ABSTRACT

Computer Numerical Control (CNC) turning is one of the most widely applied precision
machining technologies in modern manufacturing, where surface quality is a key determinant of
product performance and reliability. Surface roughness (Ra) is recognized as one of the most critical
parameters for evaluating machining results. However, reliance on operator experience in selecting
machining parameters often leads to inefficiencies and inconsistent surface quality, indicating the
need for more accurate predictive approaches. This study proposes an Artificial Neural Network
(ANN)-based model to predict surface roughness in CNC turning using two distinct experimental
configurations. The first experiment (Expl) employs three identical factor variations, whereas the
second experiment (Exp2) incorporates different factorial combinations to introduce broader
variability. The developed ANN architecture consists of four dense layers with ReLU and
LeakyReLU activation functions, complemented by dropout layers to mitigate overfitting arising
from the relatively small dataset. The results show that the ANN model effectively learns the
nonlinear relationships between machining parameters and Ra values. Furthermore, the model
achieves higher predictive accuracy in Exp2, likely due to its more structured parameter variations.
Overall, the findings demonstrate that ANN-based prediction provides a promising and efficient
approach for enhancing accuracy in surface quality assessment within CNC turning operations.
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L INTRODUCTION

The CNC turning process is a precision
machining method based on Computer
Numerical Control (CNC) technology, which is
employed to produce cylindrical components
by rotating the workpiece at a specific spindle
speed while the cutting tool moves linearly to
remove excess material from its surface (Zurita,
2017). This process is extensively utilized in the
manufacturing industry due to its capability to
achieve high levels of dimensional accuracy,
surface smoothness, and consistency, even
when machining hard-to-cut materials such as
stainless steels and nickel-based alloys (Rajesh
etal., 2022).Numerous factors affect the quality
of machining outcomes in the turning process,
among which surface roughness is considered
one of the most critical parameters, as it
significantly  influences the functional
performance, fatigue strength, and overall
quality of the final product (Abubaker et al.,
2021).

The surface quality produced by the
turning process serves as a fundamental
indicator for machining
performance and the integrity of the final
product (Hoon & Chen, 2025). Among the most
widely adopted parameters for assessing
surface quality is surface roughness, which is
commonly represented by the Ra value
(arithmetical mean roughness). The Ra value is

evaluating

strongly influenced by multiple machining
parameters, such as cutting depth, cutting
speed, feed rate, and tool condition, as well as
other factors that govern the interaction
between the cutting tool and the workpiece
material (Ate, 2024). Consequently, the
identification and optimization of cutting
parameters play a crucial role in achieving the
desired surface finish, enhancing functional
performance, and ensuring that the final
product meets the required dimensional and
surface specifications (Ruan et al., 2024).

In general, machine operators rely on trial-
and-error methods to adjust machining
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parameters in order to achieve the desired final
outcome. However, this approach is inefficient
and often requires considerable time to obtain
optimal results(Dubey et al., 2022). Over time,
efforts to predict surface roughness have
increasingly employed empirical models or
regression  methods based on
experimental data and analytical formulations.
In the study conducted by Mark et al., several
regression  techniques evaluated,
including Linear Regression, Decision Tree,

linear
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Random Forest, Epsilon-Support Vector
Regression (e-SVR), and K-Nearest Neighbors
Regression (KNN) (Usgaonkar & Gaonkar,
2025). Nevertheless, these approaches still
require further development and adjustments to
accommodate  specific combinations of
materials and machining conditions, so that
they can be applied flexibly across various
machining scenarios. Therefore, a
prediction method is needed to more accurately
estimate the Ra value.

With the advancement of artificial
intelligence (AI) technologies, new approaches
have emerged for predicting the Ra surface
roughness value with higher accuracy. One
widely adopted technique is the Artificial
Neural Network (ANN), a computational
model that mimics the functioning of human
neural networks in recognizing patterns and
capturing complex relationships among
variables (Mohd et al., 2010). Several studies
have demonstrated the potential of this method,
such as the work conducted by Antosz et al.,
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which  explored various ANN  model
configurations and reported that ANN can
efficiently and optimally predict Ra

values(Antosz et al., 2025). Another study by
Abdel et al. compared ANN with fuzzy-based
methods, revealing that ANN outperformed the
fuzzy approach in terms of prediction
accuracy(Sharkawy, 2011). Nevertheless, most
of these studies have predominantly focused on
CNC milling, indicating that the application
and implementation of ANN in CNC turning
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for Ra prediction remain relatively limited and
warrant further investigation.

Therefore, this study aims to develop a
surface roughness prediction model using the
Artificial Neural Network (ANN) approach for
the CNC turning process. The proposed model
is expected to provide more
predictions of surface roughness (Ra) compared
to traditional empirical methods. In addition,
the model is intended to serve as a basis for
determining optimal machining parameters,

accurate

enabling more efficient and consistent
operations while ensuring the desired surface
quality in manufacturing applications.

II. METHOD

In this study, we employed several key
stages to predict the surface roughness (Ra).
These stages include the acquisition of CNC
turning data, data preprocessing, the
development of an Artificial Neural Network
(ANN) model for training and testing, followed
by a model evaluation phase to assess its
predictive performance. The stage
involves generating predictions using the
optimized model. The overall workflow of the
research process is illustrated in Figure 1, which
presents the block diagram of the methodology
adopted in this study.

final

CNC Turning .
Data » Preprocessing —* ANN Model
Prediction [+ Evaluation [~ Tralnlr\g&
Testing

Figure 1. Block diagram

A. CNC Tuning Data
The data used in this study consist of a

CNC turning dataset obtained from the
Competence Center in Manufacturing (CCM)
at the Aeronautics Institute of Technology
(ITA), which is publicly available on the
Kaggle platform. The dataset comprises two
primary experiments, namely Expl and Exp2,
both conducted using CNC turning operations
on AISI H13 steel with the application of
cutting fluid (André Dorigueto Canal, 2022).
Experiment 1 (Expl) was conducted
using a new cutting tool and generated 324
samples for each surface roughness parameter.
Expl consisted of a full factorial experiment
with three factors, each varying at three levels
(DoE: 3%), and two replicates, resulting in 54
machining operations. In contrast, Experiment
2 (Exp2) was conducted using tools with three
levels of flank wear and generated 288 samples
per parameter. Exp2 also employed a full
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factorial design with three factors at three levels
(DoE: 3%) and two replicates, resulting in 54
machining operations.

The dataset includes key
machining parameters, namely depth of cut
(ap), cutting speed (vc), and feed rate (f), as
well as response variables such as arithmetic
mean surface roughness (Ra), skewness (Rsk),
kurtosis (Rku), mean profile width (RSm), and
total height (Rt). Additionally, the dataset
provides cutting force measurements, including
cutting force (Fc), passive force (Fy), feed force
(Fz), and resultant force (F), along with

several

information on tool wear condition (TCond). In
this study, the primary focus is on predicting the
Ra value as an indicator of surface roughness.

B. Preprocessing Data

At this stage, the data are cleaned and
prepared prior to being used in the training
process of the ANN model. All input features
are normalized using the Min—Max Scaler to
standardize their value ranges and enhance the
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stability of the learning process (Sanjay &
Jyothi, 2006). The normalization method
computes the transformed values based on the
following formula:

’ X = Xmin
X =—-
Xmax —

(1)

Xmin

: Actual value

: Normalized value

min - Minimum value of the feature
max - Maximum value of the feature

4

X
X
X
X

The normalized values fall within the
range of [0, 1]. Through normalization, each
feature is assigned a comparable scale, thereby
preventing any single feature from dominating
the learning process. In addition, data quality
checks, relevant feature seclection, and the
partitioning of the dataset into training and
testing subsets are performed to ensure an
objective evaluation of the model.

C. ANN Model
Artificial Neural Network (ANN) is a
computational model inspired by the

functioning of biological neural networks in
processing information. An ANN consists of
interconnected artificial neurons that operate in
parallel to recognize patterns, learn nonlinear
relationships, and generate predictions for

Danse
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Doropout
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Input Layer

output variables based on the given inputs
(Mohd et al., 2010).

In this study, an ANN model was
developed to predict the surface roughness (Ra)
based on the machining parameters contained in
the dataset. The model architecture consists of
multiple hierarchical layers that enable deeper
feature extraction. The first layer is the input
layer, which receives all machining parameters
that have undergone the preprocessing stage.

Subsequently, the model includes dense
layers that function to learn the complex
patterns and interactions among the parameters.
In this study, the dense layer consists of 52
neurons and is equipped with activation
functions. The activation functions employed
are ReLU and LeakyReLU, both of which were
evaluated using the Expl and Exp2 datasets to
compare their performance.

The subsequent layer is a dropout layer,
which is employed to prevent overfitting,
considering that the amount of data in each
experiment is relatively limited. The final layer
is the output layer, consisting of a single neuron
that produces the predicted Ra value. The
overall architecture of the model used in this
study is illustrated in Figure 2.

Output
Layer

Figure 2. ANN Model Architecture

D. Evaluation

This evaluation stage aims to assess the
performance of the Artificial Neural Network
(ANN) model in accurately and consistently
predicting the surface roughness (Ra). The
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evaluation is conducted by comparing the
model's predicted values with the actual Ra
values, using several performance metrics,
including Mean Squared Error (MSE), Mean
Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and the Coefficient
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of Determination (R?> Score) (Borucka &
Koztowski, 2024).

1) Mean Squared Error (MSE)

Mean Squared Error (MSE) is an
evaluation metric used to measure the average
of the squared differences between the
predicted values (¥,) and the actual values (y;),
which is estimated as follows:

n
1
MSE == (3 =%’ )
i=1
2) Mean Absolute Error (MAE)
Mean Absolute Error (MAE) is an

evaluation metric used to measure the average
magnitude of the absolute errors between the
model’s predicted values and the actual values.
The MAE is calculated using the following
formula:

n
1
MAE=EZ|yi—37LI (3)
i=1

3) Mean Absolute Persentage (MAPE)

Mean Absolute Percentage Error (MAPE) is
an evaluation metric that represents the average
absolute error relative to the absolute actual
values, and it is calculated as follows:

n

1 =3
MAPE = 1 ly: — 3l |
n max (€, | yi|)

i=1

4)

4) Coefficient of Determination (R? Score)

The coefficient of determination (R?) is an
evaluation metric used to indicate the
proportion of variability in the dependent
variable that can be explained by the model, and
it is calculated as follows:

B le(}’i — 97

R? = =
zi=1(yi - )7)2

)
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III. RESULT AND DISCUSSION

The research process is illustrated in Figure
X. In the first stage, the CNC turning dataset
consists of two experiments, namely Expl and
Exp2. Each experiment contains several
machining parameters, and in this study, eight
parameters were selected as inputs: depth of cut
(ap), cutting speed (vc), feed rate (f), cutting
force (Fc), passive force (Fy), feed force (Fz),
resultant force (F), and tool wear level (TCond).
These parameters were used as input variables
for predicting the Ra value.

Subsequently, all data were normalized
the Min—-Max Scaler method to
standardize the range of values before being fed
into the model. The dataset was then divided
into two partitions: training data and testing
data, with proportions of 80% and 20%,
respectively. The training data were used to
train the model in learning the patterns and
characteristics required for prediction, while
the testing data were used to evaluate the

using

model’s performance after the training and
validation processes were completed.

The third stage involves preparing the
model to be used in this study. The model
employed is an ANN consisting of four dense
layers equipped with the ReLU activation
function. In addition, the study also
incorporates an alternative activation function,
LeakyReLU, to compare the resulting model
performance.

A dropout layer with a rate of 0.09 is added
to each dense layer to mitigate the occurrence
of overfitting during the training process. The
inclusion of dropout is particularly important
given the relatively small size of the dataset,
which increases the likelihood of overfitting.

Table 1. Training Configuration

Batch .
Data | Model .ac Epoch | Optimizer
size
Exp 1
_IANN |16 {10000 | Adam
Exp 2
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The fourth stage involves the training
process, which is carried out using the
configuration presented in Table 1. Each
experimental dataset is trained using the same
configuration, consisting of a batch size of 16
and the Adam optimizer with a total of 10,000
epochs. The training process in this study is
implemented using Python 3 and executed on a
system equipped with an Intel(R) Core(TM) 15-
10500H processor and an NVIDIA GTX 4GB
GPU.

In Figure 3 presents the loss curve during
the training process for the Expl dataset. At the
initial epochs, the loss value is relatively high;

however, it begins to decrease significantly
around the fifth epoch and subsequently
stabilizes, with minor fluctuations, reaching a
final value of 0.016. This behavior indicates
that the model progressively learns the
underlying characteristics of the data and
successfully captures the relevant patterns. A
similar trend is observed in Figure 4, which
illustrates the loss curve for the Exp2 dataset.
The loss also stabilizes at a final value of 0.012.
These results demonstrate that the model
employed in this study is capable of learning
efficiently and effectively in recognizing the
inherent patterns within the dataset.
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Figure 3. Training and validation loss for Exp1
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Figure 4. Training and validation loss for Exp2
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The next stage involves evaluating the
model generated during the training process
using both the training and validation datasets.
This evaluation phase employs several
assessment metrics namely MSE, MAE,
MAPE, and R? to determine the model’s
performance for each experimental dataset.

Table 2 presents the evaluation results
of the surface roughness (Ra) prediction model
for two different experiments, namely Exp1l and
Exp2. When compared, the MSE value in Exp2
is lower than that in Expl, indicating that the
model produces smaller squared errors and
therefore generates predictions that are closer to
the actual values.

Table 2. Comparison of model evaluation in Expl and

Exp2
Data MSE | MAE | MAPE | R?
Exp 1 0,016 | 0.0884 | 11.73 | 0.87
Exp 2 0.003 | 0.0471 | 7.88 | 0.93

The MAE value in Exp2 is also lower,
at 0.0471, which is nearly half of the MAE
value observed in Expl. This indicates that the
model demonstrates better predictive capability
when applied to the Exp2 dataset. Regarding
the MAPE metric, values below 10% are
generally considered acceptable for predictive
performance evaluation. When compared, the
MAPE value in Exp2 is lower, at 7.88%,
suggesting that the model achieves higher and
more stable accuracy on that dataset.

Overall, the MSE, MAE, and MAPE
values for Exp2 are significantly lower than
those for Expl. In addition, the R? value for
Exp2 is higher, indicating that the model in this
experiment exhibits superior modeling quality
and a stronger ability to capture the relationship
between machining parameters and Ra.

This study also compares the use of an
alternative activation function, LeakyReLU,
and evaluates its performance relative to the
ReLU activation function. Table 3 presents the
comparative performance results of the surface
roughness (Ra) prediction model using these
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two activation functions across two different
experiments, namely Expl and Exp2. The
evaluation is conducted using the same four
primary metrics employed in the previous
analysis.

Table 3. Comparison of model evaluation for each
activation function

Data aktivasi MSE | MAE | MAPE | R2
Expl Relu 0,016 | 0.0884 | 11.73 | 0.87
LeakyRelu | 0.014 | 0.089 | 12.84 | 0.88
Exp2 Relu 0.003 | 0.0471 | 7.88 | 0.93
LeakyRelu | 0.004 | 0.0481 | 7.78 | 0.92

In Expl, the ReLU activation function
produced an MSE of 0.016, an MAE of 0.0884,
and a MAPE of 11.73%, with an R? value of
0.87. These results indicate that the model
performs reasonably well overall. The use of
the LeakyReLU activation function provided a
slight improvement in model performance, as
evidenced by a reduction in MSE to 0.014 and
an increase in R? to 0.88. This suggests that
LeakyReLU is slightly more effective in
capturing nonlinear patterns in the Exp1 dataset
compared to ReLU. Although the MAE and
MAPE values are marginally higher, the
increase in R? indicates improved model
stability.

In Exp2, ReLU achieved the best
performance, yielding the lowest MSE (0.003),
an MAE of 0.0471, a MAPE of 7.88%, and the
highest R? wvalue (0.93). These results
demonstrate that ReLU is highly effective for
this dataset, providing high accuracy and low
prediction error.

The LeakyReLU activation function
exhibited performance that was nearly
comparable to ReLU, with an MSE of 0.004
and an R? value of 0.92. The MAPE value was
also slightly lower (7.78%) compared to ReLU.
These findings indicate that LeakyReLU
remains competitive and performs only slightly
below ReLU in Exp2.

After completing the evaluation stage,
the next step involves conducting the prediction
process. In this study, five samples were
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selected from both the Expl and Exp2 datasets.
These samples were then used to compare the
actual surface roughness values (Ra) with the
corresponding predictions generated by the
model.

Table 4. Prediction results in Exp2

Data Ra
Actual 1.133 | 0.929 | 0462 | 0969 | 1.153
prediksi | 1.071 | 0.776 | 0.409 | 0.989 | 1.090

Table 4. presents the comparison
between the predicted values and the actual
values for the Expl dataset. In the first sample,
the predicted value is very close to the actual
value, indicating that the model is able to
capture the underlying patterns effectively. A
similar condition is observed in the third,
fourth, and fifth samples, where the differences
between the actual and predicted values remain
relatively small.

In the second sample, the model slightly
underestimates the actual value, resulting in a
somewhat larger discrepancy compared to the
other samples. Nevertheless, overall, the model
demonstrates a consistent and stable predictive
performance. The prediction trend -closely
follows the actual values, and the resulting
errors remain within an acceptable range. This
indicates that the ANN model used in this study
possesses good generalization capability in
predicting surface roughness (Ra).

Table S. Prediction results in Exp2

Data Ra
Actual 0.813 | 0.854 | 0.937 | 0.486 | 0.737
Prediksi | 0.793 | 0.870 | 0.782 | 0.441 | 0.709

In Table 5. presents the comparison
between the actual surface roughness (Ra)
values and the model’s predicted values for five
samples in the Exp2 dataset. Overall, the model
demonstrates good predictive capability,
although some discrepancies between the actual
and predicted values are observed.

In the first sample, the predicted value
is very close to the actual value, indicating
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strong accuracy. The second sample also shows
a positive result, where the predicted value is
only slightly higher than the actual value,
resulting in a relatively small difference.
However, in the third sample, the model yields
a predicted value lower than the actual one,
indicating a tendency toward underestimation
for that data point.

A similar pattern is observed in the
fourth sample, where the model again slightly
underestimates the actual value, though the
difference remains within an acceptable range.
In the fifth sample, the predicted value is again
close to the actual value with a small
discrepancy, showing consistent —model
performance across most samples.

Overall, although there are several
instances of underprediction, the prediction
pattern still follows the general trend of the
actual values. This indicates that the ANN
model used in this study possesses good
generalization capability in predicting Ra for
the Exp2 dataset and is able to provide stable
and reliable results for the majority of the
samples.

The comparison between the predicted
Ra values in Expl and Exp2 demonstrates that
the ANN model is capable of producing
predictions that closely approximate the actual
values in both experiments. However, the
prediction accuracy in Exp2 is generally higher
than in Expl. In Expl, the model exhibits
relatively larger deviations, particularly for the
second and third samples, which tend to be
underpredicted. Nevertheless, the prediction
patterns still follow the trend of the actual
values, indicating that the model’s performance
remains acceptable.

In contrast, in Exp2, the model
generates more stable and consistent
predictions. The differences between the actual
and predicted values are generally smaller
across nearly all samples, although minor
underestimations are still observed in some
instances. Overall, these results suggest that the
ANN model possesses better generalization
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capabilities when applied to the Exp2 dataset,
resulting in higher prediction accuracy for Ra
compared to Expl. These differences are likely
attributable to the characteristics of the Exp2
dataset, which may be more structured or
exhibit machining parameter variations that are
easier for the model to learn.

IV. CONCLUSION

This study aims to develop a predictive
model for surface roughness (Ra) using an
Artificial Neural Network (ANN) based on
CNC turning datasets from two distinct
experiments: Expl, with three factors varied
uniformly, and Exp2, with different factorial
variations.

The training results indicate that the model
is capable of learning the underlying patterns in
the dataset, with the loss stabilizing at final
values of 0.016 for Expl and 0.012 for Exp2.
Evaluation using MSE, MAE, MAPE, and R?
metrics shows that predictions for Exp2 are
more accurate, exhibiting lower error values
(MSE = 0.003, MAE = 0.0471, MAPE =
7.88%) and a higher R? (0.93) compared to
Expl (MSE = 0.016, MAE = 0.0884, MAPE =
11.73%, R? = 0.87). The study also compares
the use of activation functions, revealing that
ReLU is more effective for Exp2, whereas
LeakyReLU provides slight improvement for
Expl. Prediction analysis on selected samples
demonstrates the model’s good generalization
capability. Although some underpredictions are
observed, the predicted Ra values overall
follow the trend of the actual measurements
with stability.

Overall, the ANN model proves to be
effective in predicting surface roughness in
CNC turning processes, achieving higher
accuracy for the Exp2 dataset. This is likely
attributed to the more structured characteristics
of Exp2 and the relatively easier-to-learn
parameter variations in this dataset.
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